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 Abstract — Modern applications are requiring more 
processing power than ever before. The use of parallel 
development for software that runs across a distributed 
network of computers is becoming much more common. 
However, when failures occur in supercomputing clusters there 
can be substantial time lost if they system is unable to recover.  
Parallel processing jobs can run for weeks or months to 
compute the desired results.  We look at existing solutions to 
preventing parallel computing failures in parallel shared-
memory systems as well as more modern MapReduce systems 
and finally propose an M-Modular Redundant version of 
MapReduce for error free and fault tolerant computing. 

I. INTRODUCTION 
Parallel programming is rapidly becoming the most 

important method to gaining computing performance from 
modern computing hardware.  Processing speed 
improvements will slow from the previous meteoric 
increases over the last few decades and systems will need to 
extract performance by doing tasks in parallel across many 
nodes.  Parallel programming is a complicated paradigm to 
master when compared to sequential programming 
specifically when detecting and recovering from faults.  
Faults in parallel systems can come from a variety of sources 
such as hardware failures at the processor or memory level, 
environmental failures due to power loss, or even geographic 
failures caused when a datacenter is lost for some reason.  
Adding redundancy and fault tolerance becomes more 
important than simply increases the speed with which 
calculations are completed since a failure during the 
calculations will cause the system to start over and delay the 
results substantially. 

 
This paper intends to explore the current state of fault 

tolerant computing in parallel computing systems.  These 
systems include shared memory such as those used with 
OpenMP and MPI parallel frameworks as well as newer 
technology such as MapReduce systems implemented by the 
open-source Hadoop system.  Finally, we intend to propose a 
N-Modular Redundancy system for use in large-scale 
MapReduce parallel jobs. 

II. CHECKPOINTING FOR FAULT TOLERACE 
Currently, one of the most common fault-tolerant systems 

used is checkpointing.  Checkpointing is a method of saving 
processor state at various points during the computation to 
allow the system to recover from failures.  The checkpoint is 
somewhat analogous to a core dump and provides sufficient 
information to recover the state and restart computations on 

 
 
2 Elmozahy et al used the terms consistent and optimistic checkpointing in 
the paper “The Performance of Consistent Checkpointing.”  These terms 
generally equate to independent and coordinated checkpointing 
respectively.  The terms have been updated for consistency in this paper. 

another node.  Checkpointing works well in a variety of 
parallel and distributed processing systems from multicore 
systems to cluster computing and massive parallel 
processing systems.  There has been substantial research 
around minimizing the number of processes required to 
complete a consistent checkpoint [3] as well as evaluations 
of the performance of various checkpointing techniques [3].  
As checkpointing requires time and adds to the overhead of 
the system minimizing it can be beneficial to reducing the 
overall computation time of any given task.    

 
 There are two commonly used forms of checkpointing: 

Independent checkpointing and coordinated checkpointing.  
Independent checkpointing is often used in “scientific 
calculations and corporate administration systems” [6].  
These are systems that are considered non-critical and 
operation repeatable applications [6]. In these checkpointing 
systems the application threads are allowed to create 
checkpoints independent of other threads and there is no 
synchronization between threads doing the checkpointing.  
Independent checkpointing presents many advantages, as 
there is no synchronization there is no communication 
overhead and no delay in agreeing on checkpoint.  The 
processing can continue without the extended blocking of 
the checkpoint.  Additionally, if the checkpointing occurs in 
an asynchronous fashion the systems can reduce the I/O 
constraints on the storage subsystem by checkpointing one at 
a time to improve overall performance.   

 
While independent checkpointing has advantages there is 

a major drawback.  Should the system need to roll back the 
computation to a stable checkpoint, independent checkpoints 
can cause a cascading rollback of other nodes.  This can 
occur when the systems rolls back to a checkpoint causing 
other threads to also have to roll back to a checkpoint to get 
the entire systems to a stable point in the calculations.   This 
chain reaction of rollbacks will cause substantial delays in 
rollback time but also in lost work.  It is possible, although 
unlikely, that the roll back could erase all the work in the 
system to that failure point and restart the entire calculation. 

 
Coordinated checkpointing is the second form of widely 

used checkpointing and is often used in mission-critical 
applications.  These include “life-supporting systems in a 
hospital and non-idempotent applications such as ticketing 
systems” [6].  This system ensures that the checkpoints are 
consistent.  This consistent checkpointing can be achieved 
by using a two-phase commit protocol.  This method results 
in a global checkpoint being taken of the system at a given 
time.  This requires the processes to communicate and 
synchronize among themselves for each system-wide 
checkpoint.  This obviously results in overhead however, the 
main advantage to using this method is that it checkpoints 
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the system in a working and stable state and can avoid the 
cascading roll back problem seen in independent 
checkpointing.  This increased overhead gains improved 
recoverability should a fault occur. The complete snapshot is 
a working checkpoint that the system can revert to and being 
processing after a failure.  While the checkpoint is 
completing, execution of the parallel tasks is blocked by the 
system to prevent state changes.  Once the checkpoint 
completes, operation resumes normally. 

III. PERFORMANCE OF CHECKPOINTING 
A major concern with checkpointing is the overhead and 

time penalty for performing the checkpointing operation.  
Elmozahy et al in the paper [3] “The Performance of 
Consistent Checkpointing2” addressed this issue. According 
to the paper, there are three main causes of checkpointing 
overhead: Saving checkpoints to stable storage, interference 
between checkpointing and the execution processes, and the 
cost of communication between processes.   

 
Table 1 gives an overview of the general memory 

footprint of the programs tested along with the observed 
running time without checkpointing of any sort.  The result 
of the performance experiments, shown in table 2, indicate 
that checkpointing, as performed for the tests, did not 
produce a significant performance penalty on a variety of 
tested programs. The largest increase in running time 
resulted in a 5.8% increase.  In fact, the nqueens program 
experienced no discernible increase in runtime under a 
checkpointing system.  These results indicate that 
checkpointing is a cost-effect and performance-effective 
method for improving fault tolerance in distributed and 
parallel computing environments.  

 

Program 
Name 

Running 
Time 

(minutes) 

Per Process Memory 
(Kbytes) 

Code Data Total 

fft 186 21 555 576 
gauss 48 20 576 596 
grid 59 21 2163 2184 
matmult 137 20 2348 2368 
nqueens 77 18 22 40 
prime 53 38 74 112 
sparse 65 22 2954 2976 
tsp 73 21 27 48 
 

TABLE 1 – PROGRAM STATISTICS (REPRODUCED 
FROM [3]) 

 

 
2 Elmozahy et al used the terms consistent and optimistic checkpointing in 
the paper “The Performance of Consistent Checkpointing.”  These terms 
generally equate to independent and coordinated checkpointing 
respectively.  The terms have been updated for consistency in this paper. 

Program 
Name 

Without 
Checkpoint 

(sec) 

With 
Checkpoint 

(sec) 
Difference 
sec % 

fft 11157 11184 27 0.2 
gauss 2875 2885 10 0.3 
grid 3552 3618 66 1.8 
matmult 8203 819 16 0.2 
nqueens 4600 4600 0 0.0 
prime 3181 3193 12 0.4 
sparse 3893 4119 226 5.8 
tsp 4362 4362 0 0.0 

TABLE 2 – RUNNING TIME INCREASE WITH 
COORDINATED CHECKPOINTING USING COPY-ON-
WRITE (REPRODUCED FROM [3]) 

 
The authors utilized copy-on-write schemes to avoid 

blocking while writing the checkpoints to stable storage. 
Table 3 shows the running times without using copy-on-
write compared with copy-on-write and the performance 
degradation is largely dependent on the number of 
checkpoints being written.   

 
Program 
Name 

% Increase in running time 
Blocking Copy-on-write 

fft 0.2 0.2 
gauss 13.7 0.3 
grid 85.0 1.8 
matmult 3.7 0.2 
nqueens 1.8 0.0 
prime 2.9 0.4 
sparse 20.0 5.8 
tsp 1.8 0.0 

 
TABLE 3 – BLOCKING VERSUS COPY-ON-WRITE 
CHECKPOINTING (REPRODUCED FROM [3]) 

 
In addition to the copy-on-write scheme, checkpointing 

can be done in full or incremental checkpoints.  The goal of 
the incremental checkpoint is to reduce the amount of data 
written at each checkpoint. With the reduction in data the 
time required to checkpoint should be reduced and thus the 
program performance increased.  Table 4 shows the 
improvement observed in running times from full 
checkpointing to incremental checkpointing. 

 
 
 
 
 

 
 



 
 

 

Program 
Name 

% Increase in running time 

Full 
Checkpoint 

Incremental 
Checkpoint 

% 
Reduction 

fft 17.6 2.0 89 

gauss 17.8 14.1 21 

grid 60.2 60.2 0 

matmult 66.1 3.3 95 

nqueens 2.6 1.5 42 

prime 4.0 2.8 30 

sparse 86.9 25.7 70 

tsp 2.2 0.2 91 
 
TABLE 4 – FULL CHECKPOINTING VERSUS 

INCREMENTAL CHECKPOINTING (REPRODUCED 
FROM [3]) 
 
 Incremental checkpointing improves performance in 
virtually all cases as seen in table 4.  The final measurement 
the authors made was to compare optimistic versus 
coordinated checkpointing.  Table 5 shows the performance 
difference between the two checkpointing schemes outlined.  
The table shows that the performance varies based on the 
program and neither independent nor coordinated 
checkpointing provide guaranteed performance 
improvements over the others.   
 

Program 
Name 

% Increase in running time 

Coordinated 
Checkpointing 

Independent 
Checkpointing 

fft 0.2 0.2 

gauss 1.0 0.3 

grid 1.6 1.8 

matmult 0.1 0.2 

nqueens 0.0 0.0 

prime 0.2 0.4 

sparse 3.0 5.8 

tsp 0.0 0.0 
 
TABLE 5 – COORDINATED VERSUS INDEPENDENT 
CHECKPOINTING (REPRODUCED FROM [3]) 
 

IV. CHECKPOINTING INTERVALS 
An important consideration when performing checkpoints 

is the frequency with which the system performs 
checkpoints.  Frequent checkpoints, while helpful in 
restarting calculations on a working node without excessive 
loss of data, can cause performance degradation, as the 

system is constantly checkpointing and not getting as much 
work done. However, reducing the interval to checkpointing 
can result in too much work needing to be performed again 
once a node or core fails.  The balance exists in an optimal 
checkpointing interval.   

 
Bressoud and Kozuch performed an analysis on 

checkpointing using data provided by the Los Alamos 
National Laboratories on three separate cluster-computing 
systems over the span of many years.  Two systems 
comprised of 1024 nodes and 4096 cores and one system of 
256 nodes and 1024 cores. Bressoud and Kozuch presented 
substantial data regarding the execution time of programs in 
the presence of faults running on fault tolerant and non-fault 
tolerant systems.  The execution time, EF, is given by the 
following in equation 1. 

E! =   
(e!! − 1)

λ
 

EQUATION 1 
 
 As the number of cores n increase in a system without 
checkpointing, the running times of programs on those 
systems increases due to unrecoverable faults.  The 
programs must be restarted on the system and attempt to 
complete prior to a failure.  The data from Bressoud and 
Kozuch indicates that running time can increase 
exponentially as shown in figure 1.  Execution time is 
plotted as a function of n, the number of cores in the system.  
The graphs show the data from two of the three systems 
from Los Alamos National Laboratories, S18 and S20 as 
well as two programs, P1 and P2 and the results of their 
simulation.   
   

 
FIGURE 1 EXECUTION TIME FOR COORDINATED 
APPLICATION WITH NO CHECKPOINTING - REPRODUCED 
FROM [13] 
 



 
 

 

As the graphs in figure 1 clearly show, the execution time 
increases with the number of cores available due to the lack 
of fault tolerance.  Jobs are not completed in their 
simulations prior to faults occurring forcing a complete 
restart of the calculations in hopes that they complete prior 
to a fault. 
 
 Once checkpointing is introduced the performance of 
long-running jobs in the presence of failures improved 
drastically.  Figure 2 shows the running times of an 
application in days as a function of I, the frequency of 
checkpointing in minutes.  The various core values n are 
plotted on separate lines. 
 

 
FIGURE 2 – RUNNING TIME OF AN APPLICATION AS A 
FUNCTION OF I, THE FREQUENCY OF CHECKPOINTING IN 
MINUTES. – REPRODUCED FROM [13] 
 

As is obvious from the graphs, the running time has 
decreased dramatically as the number of cores n 

increases (shown as separate lines on the graphs).  The 
data also show that the frequency of checkpointing can 
have an impact on the performance of the system.  If the 
system checkpoints too often the overall performance is 
degraded sharply.  However, if the system does not 
checkpoint enough, the time to recover from a failure 
will degrade the performance as well thought not quite as 
dramatically.  Bressoud and Kozuch describe a equation 
for determining the optimum checkpointing interval in 
minutes as a function of the failure rate λ and C, the 
checkpoint overhead during which no task work is 
accomplished in minutes as seen in equation 2. 

 
I!"# =    2C/λ 

EQUATION 2 
 
Additionally, we can see from equation 2 that as 

values of C increase the optimal checkpointing interval 
will increase.  To determine the appropriate 
checkpointing interval a programmer must be very aware 
of the checkpoint overhead to ensure the best 
performance in addition to the failure rate of the system. 

V. HYBRID CHECKPOINTING 
Given that each of the described checkpointing systems 

has its advantages and disadvantages it would be logical to 
combine these systems into a hybrid checkpoint system such 
that the weaknesses of each are masked by the strengths of 
the other. Cao et al proposed such a system in their paper [6] 
“Checkpointing in hybrid distribution systems.” In this 
hybrid system the authors proposed separating the system 
into subsystems of coordinated (CO) subsystems and 
independent (IN) subsystems based on the checkpointing 
schemes employed.  The hybrid system has subsystems 
perform coordinated checkpoints at a low level.  Each 
subsystem then propagates up to a single independent 
checkpointing system where the system can make 
checkpoints of each subsystem for recovery.  The goal of the 
hybrid system is such that a rollback in the independent 
checkpointing subsystem will not lead to a rollback in the 
coordinated checkpointing system and that a rollback within 
the coordinated checkpointing subsystem will not propagate 
to a separate coordinated checkpointing subsystem. 

 
This system allows low-level subsystems to make 

coordinated checkpoints to help reduce the possibility of a 
cascading rollback during recovery.  Each subsystem then 
becomes stable in the event of a failure.  Reducing the size 
of a coordinated checkpoint versus a system-wide 
coordinated checkpoint will help control the overhead of 
such an operation.  The subsystems are loosely coupled and 
the coordinated subsystems do not need to communicate 
with other coordinated subsystems.  This ensures subsystem 
stability and recoverability however, the addition of a single 
independent checkpointing system at a higher level ensures 
system stability.   

 



 
 

 

The independent checkpointing system (IN) captures 
checkpoints of the coordinated subsystems.  The 
independent checkpoint system does not know the details of 
the CO subsystems.  It manages checkpoints for the CO 
subsystems as a whole.  Given the loosely coupled nature of 
the CO subsystems the entire system is no longer subject to 
the possibility of a cascading rollback should a failure occur.  
Even if an entire subsystem fails the independent 
checkpoints can recover the subsystem and restore the 
system to a stable state.   

VI. FAULT TOLERANCE AND MAPREDUCE 
MapReduce was originally developed by Google to 

handle large-scale data sets on distributed computing 
systems.  Hadoop implements MapReduce as an open source 
project.   The system consists of a map step whereby the 
master or controller node “maps” the input by dividing it 
into smaller sub-problems and distributes the tasks to worker 
nodes.  Once the worker nodes complete their designated 
tasks the controller node accepts the results of the sub-
problems during the reduce step and combines them in some 
meaningful fashion so as to provide the solution to the 
original problem.  

 
MapReduce has been used by the New York Times to 

convert 4 TB of tiff images into PDF format by mapping 
conversion tasks to worker nodes and aggregating the 
response [11].   These tiff images comprised the New York 
Times articles scanned from the original paper from 1851 
through 1922.  Google uses MapReduce technology to 
process end-user queries via google.com.  Google indexes 
the Internet using scripts known as spiders.  These spiders 
crawl websites and save the data on those websites.  The 
data is housed on a common file system available to the 
MapReduce nodes.  When a user queries google.com, 
Google servers map the query to any number of nodes.  Each 
node is allocated a small subset of the documents found on 
the Internet by the spider.  The results are returned to the 
controller node and aggregated for display to the user.  This 
happens hundreds of millions of times each day.  O’Malley 
and Murthy [15] have provided research on the performance 
of MapReduce using Hadoop.  Their data indicates a 1406 
node Hadoop MapReduce cluster was able to perform the 
Graysort benchmark on 500 gigs of data in 59 seconds.   

 
MapReduce and Hadoop can be used for long running 

calculations on large data sets such as manipulating large 
sets of spatial data, analyzing weather data, or modeling 
various data-intensive problems.  Failure of a single node 
will cause the entire process to fail in certain workflows, as 
there will be a portion of data unaccounted for in the final 
results.  Given a task of sorting many petabytes of data, a 
failure of a single node would leave a gap in the results. A 
controller can restart a failed job on an idle node or wait for 
the tasks to complete and remap the job to a finished node.  
However, on long-running jobs the delay this would 

introduce could be catastrophic.  If the execution of a single 
map operation takes on the order of weeks or months 
restarting that failed task on a functioning node would slow 
the result while restarting the task on a node once it has 
completed its original task would double the execution time.  
For time-sensitive tasks this sort of fault tolerance may not 
yield acceptable results.  

 
According to Kavulya et al, most jobs fail within 150 

seconds of the first aborted task and a maximum error 
latency of 4.3 days [16].  However, the first aborted task 
may not occur until much further into the calculations.  
Additionally, the majority of errors were seen in the map 
phase versus the reduce phase of the operation when the 
available processor count is low and the impact of a fault is 
going to be more significant.  This impact increases 
depending on the nature of the fault.  In a two-core system, a 
permanent fault will reduce the available cores to one 
resulting in a substantial increase in running time.  However, 
on large systems with larger number of available cores to 
execute tasks on, a permanent failure has a less significant 
impact on the execution of the overall job.   

VII. N-MODULAR REDUNDANT MAPREDUCE 
In order to avoid failures we propose applying the same 

N-modular redundancy seen in embedded systems and other 
fault tolerant areas to the MapReduce programming 
paradigm.  The goal of an N-Modular Redundant 
MapReduce system would be to facilitate highly reliable 
parallel processing performed in a heterogeneous 
environment via commodity off the shelf hardware.  The 
system would require no expensive or customized hardware.  
This system would allow for two modes of operation: Fault 
tolerant and highly reliable. In fault tolerant mode it would 
map the job to two or more nodes and simply respond with 
the first result. This protects against a failed node. The 
highly reliable mode would compare the results and return 
the majority. The system would allow for variable 
redundancy in the configuration of jobs prior to the mapping 
operation.   

 
There has been work around developing NMR processors 

for distributed systems to address Byzantine failures [12] 
however these systems require specialized processors and 
components.  Given the distributed nature and ability for 
MapReduce to run on heterogeneous hardware it makes the 
environment well suited to the overlay of an NMR system 
on top of existing MapReduce constructs. MapReduce is 
fault tolerant by design but it is unable to handle faults and 
still produce results in at a desired time.  When calculations 
must by accurate such as mission or life critical application 
or results must be complete by a desired time, MapReduce 
cannot meet those requirements in the presences of faults.  
The goal of an NMR fault tolerant MapReduce cluster is to 
facilitate large data-set operations using open-source 
software running on commodity hardware. 



 
 

 

In figure 3 we show the normal state of a MapReduce 
cluster.  The controller maps tasks to nodes, the nodes 
complete those tasks, and the response is typically returned 
to the controller during the reduce phase.  Figure 4 shows a 
failed node in MapReduce where no results from that node 
are ever returned to the controller. The goal of the NMR 
MapReduce is to mask this failure and allow for normal 
operation to continue without any lost time. 

  
FIGURE 3 – NORMAL MAPREDUCE ARCHITECTURE 
 

 
FIGURE 4 –MAPREDUCE WITH A FAILED NODE 
 
In figure 6 we show the proposed architecture for the 

NMR MapReduce system.  Each task is mapped to three 
nodes.  This instance is a triple modular redundant system 

but the idea can scale beyond three nodes should the 
operator require it.  Each node performs the calculations 
independently.  The results are then sent to a voter.  In the 
diagram the voter is logically shown as an independent node 
however in practice the voter could be the controller node.  
The voter will take the results of each node and compare 
them.  The voter will relay the proper results to the 
controller based on the criteria specified in the configuration.  
The operator can specify how many redundant nodes the 
operation executes on as well as how many need to match 
for a consensus.  For instance, the operator can specify five 
redundant nodes and three of those five must agree. 

 

Figure 3 – Proposed NMR MapReduce cluster. 

VIII. VOTING IN THE N-MODULAR REDUNDANT SYSTEM 
Voting in an N-modular redundant MapReduce system 

can be complicated.  Voting in embedded systems is simpler 
as the inputs are logic inputs consisting typically of 1s and 
0s.  An embedded voter could simply compare each signal to 
the rest and return the majority or for simple fault tolerance, 
return the first response.  The voter in a higher-level 
MapReduce operation would have to contend with larger 
result sets and the comparisons could be complicated.  One 
attempt to minimize the complication of the voting 
algorithm is to hash the results to a simple string value for 
comparison.   

 
There are two obvious modes of operations for a NMR 

MapReduce cluster.  The first being simple fault tolerance.  
A cluster could be run in a 2*N configuration such that 
every map task is executed on two MapReduce nodes.  
Given equivalent hardware, the tasks should complete in the 



 
 

 

same time and the result is a simple first response.  The voter 
is reduced to simply passing along the first result it receives.  
This system can be extended depending on the number of 
redundant nodes required.   For calculations that simply 
cannot be lost the cluster could be configured in a 3*N or 
higher would improve the reliability.  The reliability in the 
case of parallel execution is a simple parallel calculation as 
seen in equation 3 where Rn is the reliability of a given 
system in the TMR configuration.   

 
!! = 1 − (1 − !!)(1 − !!) 

EQUATION 3 – RELIABILITY OF A PARALLEL SYSTEM 
 
Alternatively, should highly reliable calculations be 

required of the system, the voter system could be employed 
to compare the results of each node and ensure that the 
system returns the majority.  This would be used where 
component reliability is already high however incorrect 
results would present a significant problem for the operators. 

 
1. For each Ri in Rn 
2. Compare Ri with Ri through Rn 
3.    If Ri = Rj counter = counteri + 1 
4.    next j 
5. if MAX(counteri) >=MIN_CONSENSUS 
6.      return Ri 
7. else 
8.      return null 

FIGURE 6 – VOTING ELECTION ALGORITHM 
 
Figure 6 shows a simple algorithm to count the number of 

hashed results that are equal.  There is no need to compare 
all values to each other simply compare each result to the 
remaining results and count the total number that are equal.  
We then return the result with the maximum number of 
equal results in the entire set as long as that number is 
greater than the minimum required consensus as specified in 
the job configuration.  This could be as low as one if the aim 
is durable computing and there are complete node failures or 
the ceiling of n/2 for the majority to mask faults in the 
results. 

IX.  SPATIAL CONSIDERATIONS 
In an attempt to facilitate maximum node availability we 

evaluate physical and spatial considerations for the 
MapReduce cluster.  To maintain high availability the 
MapReduce system should be designed to take advantage of 
some spatial distribution.  With modern networks capable of 
high-speed data transmission MapReduce nodes could 
theoretically be located throughout datacenters across the 
world.  However, at a minimum, the system would need to 
be configured to have nodes in separate racks in the data 
center.  Each rack should be connected to separate power 
systems such that if the power fails in rack the other racks 
continue operation.  At a minimum, no more than two nodes 
in the NMR configuration should be in the same rack.  This 
allows the loss of one rack in the data center due to power 
failure or network failure while still maintaining a running 

node.  In a properly configured system the reduction object 
from the running node would be used as the only survivor of 
the failure and the operation would continue.  Obviously this 
is dependent on proper power and network redundancy, 
which is outside the scope of this paper.   

 
Moving beyond simple spatial considerations within the 

datacenter, in ultra high reliability operations the nodes 
could be moved to an offsite datacenter.  For instance, in a 
cluster of 3,072 nodes, one third of those nodes would be 
allocated to the local datacenter while one third each could 
be placed in offsite datacenters to allow for the loss of two 
of the three datacenters completely in this system. For true 
operational stability and reliability however the controller 
node would likely need to be placed a fourth location.  The 
main fault of this design is the single point of failure the 
controller node presents. 

 
Common storage is the underpinning of MapReduce.  The 

Hadoop file system presents all the nodes with a common 
view of the data.  This allows the nodes to perform 
operations on the data without having to replicate the data.  
This is a major constraint on the spatial distribution of 
nodes, as it requires a network capable of replicating or 
operating on massive data sets. Within a very small 
geographic region this is typically not an issue as local area 
networks and fiber interconnections make data transfer fast 
and reliable.  However, moving beyond the scope of a few 
city blocks and into the realm of distributing nodes to 
various states or countries would become dramatically more 
challenging.   

X. CONTROLLER CONSIDERATIONS 
At the heart of the MapReduce model is a master node or 

a controller.  This node is responsible for the mapping 
operation and distributes the workload to the nodes.  In the 
NMR MapReduce model proposed there is no consideration 
or controller node redundancy.  The general idea is that the 
controller is not the same as the nodes and is, in and of itself, 
highly reliable.  Should the controller fail for some reason, 
the entirety of the calculations would be lost and the entire 
cluster itself would completely fail.   However, the system 
could be designed in such a way that instead of partitioning 
the nodes into a mirrored or NMR configuration the design 
would build MapReduce systems in an NMR or mirrored 
configuration.  For instance, in a simple mirrored system, 
there would be two complete and functioning MapReduce 
clusters complete with their own controllers and own sets of 
nodes.  These clusters would have no understanding or 
context of the redundancy applied.  Each controller would be 
given the exact same tasks to complete and would then 
return their results independently.  A voter node or array of 
voter nodes would than take the results and return the proper 
data based on the configuration.  In the case of the mirror, it 
would simply return the first response.  A single node failure 
at the cluster level of either of the clusters would remove 
that cluster from service and the computation would be 
dependent on the remaining operational cluster.    



 
 

 

 
Applying the NMR style redundancy to the higher-level 

MapReduce clusters there would be three distinct and 
complete clusters.  They would each get a complete working 
problem set and return responses to the voter node or nodes.  
The voters would then return the majority answer to the user.   

 
Moving the redundancy from the node level to the cluster 

level provides obvious benefits.  No longer is the controller 
the single point of failure.  Additionally, allocating jobs 
could be easier since we are no longer altering the 
fundamental operation of a MapReduce system by injecting 
changes into the core of the operation.  In operating 
redundant nodes we would need to reconfigure the code to 
allocate the tasks to three nodes, the controller would need to 
have an advanced understanding of the nodes not normally 
required (e.g. spatial data to distribute work based on 
location and machine data to match like machines).  The 
controller would also need to understand how to perform the 
reduction on multiple identical datasets returned from 
redundant nodes.  Bringing the redundancy up one level 
allows us to add the functionality onto existing MapReduce 
clusters.  No longer is the off-the-shelf cluster aware of fault 
tolerance it simply operates as normal.  In this scenario we 
return results to a second controller that implements our 
redundancy.  This voter or controller would aggregate the 
responses from multiple MapReduce clusters and present the 
results.  This effectively commoditizes the MapReduce 
cluster and allows for the fault tolerant cluster user to add 
clusters to the fault tolerant cluster.  It’s conceivable that a 
user at one national laboratory would be able to “borrow” 
another lab’s MapReduce cluster for added fault tolerance.  
The clusters can be completely heterogeneous and unaware 
of the other.  The operator would run software that is aware 
of the clusters, the software would dispatch the jobs, and 
finalize the responses.  The biggest draw back in this 
scenario is the loss of common data storage. 

 
Again, the issue of data locality becomes an issue in the 

redundant cluster configuration.  Truly independent clusters 
would not share a common file system making MapReduce 
not a viable option.  The dependence on a common file 
system is fundamental to the MapReduce configuration. The 
arrays of MapReduce clusters could be configured in a very 
confined geographic area such as a building or within a city 
block or two.  This would allow for high-speed fiber 
interconnections and the sharing of a common file system.  
The nodes would be allocated into various clusters and the 
clusters controlled via master the proposed fault tolerant 
software.  This provides some spatial distribution but not so 
much as to make the data transfer and common file system 
impossible.   

 
Obviously, these are scenarios and configurations 

motivated by not only high-performance parallel computing 
but also by ultra high reliability computing. These 
configurations would be cost prohibitive for a sizable 
portion of the general high-performance user base. 

XI. COST CONSIDERATIONS 
Any system implementing mirroring or N-modular 

redundancy in computations incurs a cost penalty as a result.  
Adding redundancy requires adding components, 
interconnections, additional power, cooling, and 
management in a MapReduce environment.  The traditional 
high-performance computing user would not require the 
kinds of redundant systems described here when using 
MapReduce.  However, for highly valuable and long running 
tasks, the benefits would justify the costs.  Given that 
Hadoop MapReduce clusters can be built with simple off the 
shelf servers the barrier to entry is dramatically reduced.  
Replicating complete MapReduce clusters in a high 
reliability configuration would double, triple, or more the 
cost of the cluster however it would provide dramatic 
improvements in the reliability.  This sort of system would 
be appealing to organizations that need results from large 
datasets within time constraints and thus cannot wait for 
tasks to be restarted and the delivery delayed as well as 
organizations for which data accuracy is or paramount 
importance. 

XII. CONCLUSION 
We have evaluated the widely used parallel computing 

fault tolerant schemes in shared memory systems as well as 
MapReduce.  Shared memory systems make use of two 
different checkpointing schemes to save execution state to a 
stable storage and recover later in the event of a node or core 
failure.  MapReduce is inherently fault tolerant however it 
often does not recover quickly as it needs to wait for a node 
to become free before restarting, from the beginning, the 
failed computation on that node.  We proposed a scheme 
whereby the computations are started simultaneously on 
two, three, or more nodes and the results are either taken in a 
first return wins or via a voting algorithm to ensure 
correctness in the results.  The results are hashed in this case 
and compared.  Typically this is a majority wins scenario but 
the operator can configure the output of the voting 
mechanism for the desired reliability.  Additionally, we 
proposed moving the redundancy from the node level up to 
the cluster level and creating arrays of clusters for fault 
tolerance. While the major constraint in the node-level 
configuration was introducing new code to the proven 
MapReduce systems, moving it to the cluster level presents 
the problem of the common file system.   

 
MapReduce is a technology with substantial promise to 

change the way we deal with large data sets.  It is a 
technology that is just beginning to show what it can do in 
business and laboratories around the world.  We have shown 
that while it comes at a considerable cost, high-performance 
fault tolerant computing using MapReduce is possible in 
using a mirrored or NMR style configuration.   
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