

q

 Abstract — Modern applications are requiring more
processing power than ever before. The use of parallel
development for software that runs across a distributed
network of computers is becoming much more common.
However, when failures occur in supercomputing clusters there
can be substantial time lost if they system is unable to recover.
Parallel processing jobs can run for weeks or months to
compute the desired results. We look at existing solutions to
preventing parallel computing failures in parallel shared-
memory systems as well as more modern MapReduce systems
and finally propose an M-Modular Redundant version of
MapReduce for error free and fault tolerant computing.

I. INTRODUCTION
Parallel programming is rapidly becoming the most

important method to gaining computing performance from
modern computing hardware. Processing speed
improvements will slow from the previous meteoric
increases over the last few decades and systems will need to
extract performance by doing tasks in parallel across many
nodes. Parallel programming is a complicated paradigm to
master when compared to sequential programming
specifically when detecting and recovering from faults.
Faults in parallel systems can come from a variety of sources
such as hardware failures at the processor or memory level,
environmental failures due to power loss, or even geographic
failures caused when a datacenter is lost for some reason.
Adding redundancy and fault tolerance becomes more
important than simply increases the speed with which
calculations are completed since a failure during the
calculations will cause the system to start over and delay the
results substantially.

This paper intends to explore the current state of fault

tolerant computing in parallel computing systems. These
systems include shared memory such as those used with
OpenMP and MPI parallel frameworks as well as newer
technology such as MapReduce systems implemented by the
open-source Hadoop system. Finally, we intend to propose a
N-Modular Redundancy system for use in large-scale
MapReduce parallel jobs.

II. CHECKPOINTING FOR FAULT TOLERACE
Currently, one of the most common fault-tolerant systems

used is checkpointing. Checkpointing is a method of saving
processor state at various points during the computation to
allow the system to recover from failures. The checkpoint is
somewhat analogous to a core dump and provides sufficient
information to recover the state and restart computations on

2 Elmozahy et al used the terms consistent and optimistic checkpointing in
the paper “The Performance of Consistent Checkpointing.” These terms
generally equate to independent and coordinated checkpointing
respectively. The terms have been updated for consistency in this paper.

another node. Checkpointing works well in a variety of
parallel and distributed processing systems from multicore
systems to cluster computing and massive parallel
processing systems. There has been substantial research
around minimizing the number of processes required to
complete a consistent checkpoint [3] as well as evaluations
of the performance of various checkpointing techniques [3].
As checkpointing requires time and adds to the overhead of
the system minimizing it can be beneficial to reducing the
overall computation time of any given task.

 There are two commonly used forms of checkpointing:

Independent checkpointing and coordinated checkpointing.
Independent checkpointing is often used in “scientific
calculations and corporate administration systems” [6].
These are systems that are considered non-critical and
operation repeatable applications [6]. In these checkpointing
systems the application threads are allowed to create
checkpoints independent of other threads and there is no
synchronization between threads doing the checkpointing.
Independent checkpointing presents many advantages, as
there is no synchronization there is no communication
overhead and no delay in agreeing on checkpoint. The
processing can continue without the extended blocking of
the checkpoint. Additionally, if the checkpointing occurs in
an asynchronous fashion the systems can reduce the I/O
constraints on the storage subsystem by checkpointing one at
a time to improve overall performance.

While independent checkpointing has advantages there is

a major drawback. Should the system need to roll back the
computation to a stable checkpoint, independent checkpoints
can cause a cascading rollback of other nodes. This can
occur when the systems rolls back to a checkpoint causing
other threads to also have to roll back to a checkpoint to get
the entire systems to a stable point in the calculations. This
chain reaction of rollbacks will cause substantial delays in
rollback time but also in lost work. It is possible, although
unlikely, that the roll back could erase all the work in the
system to that failure point and restart the entire calculation.

Coordinated checkpointing is the second form of widely

used checkpointing and is often used in mission-critical
applications. These include “life-supporting systems in a
hospital and non-idempotent applications such as ticketing
systems” [6]. This system ensures that the checkpoints are
consistent. This consistent checkpointing can be achieved
by using a two-phase commit protocol. This method results
in a global checkpoint being taken of the system at a given
time. This requires the processes to communicate and
synchronize among themselves for each system-wide
checkpoint. This obviously results in overhead however, the
main advantage to using this method is that it checkpoints

Fault Tolerance in Distributed Parallel Computing

M. Long, longm@cs.colostate.edu Graduate Student
CS530DL Spring 2011, Colorado State University

the system in a working and stable state and can avoid the
cascading roll back problem seen in independent
checkpointing. This increased overhead gains improved
recoverability should a fault occur. The complete snapshot is
a working checkpoint that the system can revert to and being
processing after a failure. While the checkpoint is
completing, execution of the parallel tasks is blocked by the
system to prevent state changes. Once the checkpoint
completes, operation resumes normally.

III. PERFORMANCE OF CHECKPOINTING
A major concern with checkpointing is the overhead and

time penalty for performing the checkpointing operation.
Elmozahy et al in the paper [3] “The Performance of
Consistent Checkpointing2” addressed this issue. According
to the paper, there are three main causes of checkpointing
overhead: Saving checkpoints to stable storage, interference
between checkpointing and the execution processes, and the
cost of communication between processes.

Table 1 gives an overview of the general memory

footprint of the programs tested along with the observed
running time without checkpointing of any sort. The result
of the performance experiments, shown in table 2, indicate
that checkpointing, as performed for the tests, did not
produce a significant performance penalty on a variety of
tested programs. The largest increase in running time
resulted in a 5.8% increase. In fact, the nqueens program
experienced no discernible increase in runtime under a
checkpointing system. These results indicate that
checkpointing is a cost-effect and performance-effective
method for improving fault tolerance in distributed and
parallel computing environments.

Program
Name

Running
Time

(minutes)

Per Process Memory
(Kbytes)

Code Data Total

fft 186 21 555 576
gauss 48 20 576 596
grid 59 21 2163 2184
matmult 137 20 2348 2368
nqueens 77 18 22 40
prime 53 38 74 112
sparse 65 22 2954 2976
tsp 73 21 27 48

TABLE 1 – PROGRAM STATISTICS (REPRODUCED
FROM [3])

2 Elmozahy et al used the terms consistent and optimistic checkpointing in
the paper “The Performance of Consistent Checkpointing.” These terms
generally equate to independent and coordinated checkpointing
respectively. The terms have been updated for consistency in this paper.

Program
Name

Without
Checkpoint

(sec)

With
Checkpoint

(sec)
Difference
sec %

fft 11157 11184 27 0.2
gauss 2875 2885 10 0.3
grid 3552 3618 66 1.8
matmult 8203 819 16 0.2
nqueens 4600 4600 0 0.0
prime 3181 3193 12 0.4
sparse 3893 4119 226 5.8
tsp 4362 4362 0 0.0

TABLE 2 – RUNNING TIME INCREASE WITH
COORDINATED CHECKPOINTING USING COPY-ON-
WRITE (REPRODUCED FROM [3])

The authors utilized copy-on-write schemes to avoid

blocking while writing the checkpoints to stable storage.
Table 3 shows the running times without using copy-on-
write compared with copy-on-write and the performance
degradation is largely dependent on the number of
checkpoints being written.

Program
Name

% Increase in running time
Blocking Copy-on-write

fft 0.2 0.2
gauss 13.7 0.3
grid 85.0 1.8
matmult 3.7 0.2
nqueens 1.8 0.0
prime 2.9 0.4
sparse 20.0 5.8
tsp 1.8 0.0

TABLE 3 – BLOCKING VERSUS COPY-ON-WRITE
CHECKPOINTING (REPRODUCED FROM [3])

In addition to the copy-on-write scheme, checkpointing

can be done in full or incremental checkpoints. The goal of
the incremental checkpoint is to reduce the amount of data
written at each checkpoint. With the reduction in data the
time required to checkpoint should be reduced and thus the
program performance increased. Table 4 shows the
improvement observed in running times from full
checkpointing to incremental checkpointing.

Program
Name

% Increase in running time

Full
Checkpoint

Incremental
Checkpoint

%
Reduction

fft 17.6 2.0 89

gauss 17.8 14.1 21

grid 60.2 60.2 0

matmult 66.1 3.3 95

nqueens 2.6 1.5 42

prime 4.0 2.8 30

sparse 86.9 25.7 70

tsp 2.2 0.2 91

TABLE 4 – FULL CHECKPOINTING VERSUS

INCREMENTAL CHECKPOINTING (REPRODUCED
FROM [3])

 Incremental checkpointing improves performance in
virtually all cases as seen in table 4. The final measurement
the authors made was to compare optimistic versus
coordinated checkpointing. Table 5 shows the performance
difference between the two checkpointing schemes outlined.
The table shows that the performance varies based on the
program and neither independent nor coordinated
checkpointing provide guaranteed performance
improvements over the others.

Program
Name

% Increase in running time

Coordinated
Checkpointing

Independent
Checkpointing

fft 0.2 0.2

gauss 1.0 0.3

grid 1.6 1.8

matmult 0.1 0.2

nqueens 0.0 0.0

prime 0.2 0.4

sparse 3.0 5.8

tsp 0.0 0.0

TABLE 5 – COORDINATED VERSUS INDEPENDENT
CHECKPOINTING (REPRODUCED FROM [3])

IV. CHECKPOINTING INTERVALS
An important consideration when performing checkpoints

is the frequency with which the system performs
checkpoints. Frequent checkpoints, while helpful in
restarting calculations on a working node without excessive
loss of data, can cause performance degradation, as the

system is constantly checkpointing and not getting as much
work done. However, reducing the interval to checkpointing
can result in too much work needing to be performed again
once a node or core fails. The balance exists in an optimal
checkpointing interval.

Bressoud and Kozuch performed an analysis on

checkpointing using data provided by the Los Alamos
National Laboratories on three separate cluster-computing
systems over the span of many years. Two systems
comprised of 1024 nodes and 4096 cores and one system of
256 nodes and 1024 cores. Bressoud and Kozuch presented
substantial data regarding the execution time of programs in
the presence of faults running on fault tolerant and non-fault
tolerant systems. The execution time, EF, is given by the
following in equation 1.

E! =
(e!! − 1)

λ

EQUATION 1

 As the number of cores n increase in a system without
checkpointing, the running times of programs on those
systems increases due to unrecoverable faults. The
programs must be restarted on the system and attempt to
complete prior to a failure. The data from Bressoud and
Kozuch indicates that running time can increase
exponentially as shown in figure 1. Execution time is
plotted as a function of n, the number of cores in the system.
The graphs show the data from two of the three systems
from Los Alamos National Laboratories, S18 and S20 as
well as two programs, P1 and P2 and the results of their
simulation.

FIGURE 1 EXECUTION TIME FOR COORDINATED
APPLICATION WITH NO CHECKPOINTING - REPRODUCED
FROM [13]

As the graphs in figure 1 clearly show, the execution time
increases with the number of cores available due to the lack
of fault tolerance. Jobs are not completed in their
simulations prior to faults occurring forcing a complete
restart of the calculations in hopes that they complete prior
to a fault.

 Once checkpointing is introduced the performance of
long-running jobs in the presence of failures improved
drastically. Figure 2 shows the running times of an
application in days as a function of I, the frequency of
checkpointing in minutes. The various core values n are
plotted on separate lines.

FIGURE 2 – RUNNING TIME OF AN APPLICATION AS A
FUNCTION OF I, THE FREQUENCY OF CHECKPOINTING IN
MINUTES. – REPRODUCED FROM [13]

As is obvious from the graphs, the running time has
decreased dramatically as the number of cores n

increases (shown as separate lines on the graphs). The
data also show that the frequency of checkpointing can
have an impact on the performance of the system. If the
system checkpoints too often the overall performance is
degraded sharply. However, if the system does not
checkpoint enough, the time to recover from a failure
will degrade the performance as well thought not quite as
dramatically. Bressoud and Kozuch describe a equation
for determining the optimum checkpointing interval in
minutes as a function of the failure rate λ and C, the
checkpoint overhead during which no task work is
accomplished in minutes as seen in equation 2.

I!"# = 2C/λ

EQUATION 2

Additionally, we can see from equation 2 that as

values of C increase the optimal checkpointing interval
will increase. To determine the appropriate
checkpointing interval a programmer must be very aware
of the checkpoint overhead to ensure the best
performance in addition to the failure rate of the system.

V. HYBRID CHECKPOINTING
Given that each of the described checkpointing systems

has its advantages and disadvantages it would be logical to
combine these systems into a hybrid checkpoint system such
that the weaknesses of each are masked by the strengths of
the other. Cao et al proposed such a system in their paper [6]
“Checkpointing in hybrid distribution systems.” In this
hybrid system the authors proposed separating the system
into subsystems of coordinated (CO) subsystems and
independent (IN) subsystems based on the checkpointing
schemes employed. The hybrid system has subsystems
perform coordinated checkpoints at a low level. Each
subsystem then propagates up to a single independent
checkpointing system where the system can make
checkpoints of each subsystem for recovery. The goal of the
hybrid system is such that a rollback in the independent
checkpointing subsystem will not lead to a rollback in the
coordinated checkpointing system and that a rollback within
the coordinated checkpointing subsystem will not propagate
to a separate coordinated checkpointing subsystem.

This system allows low-level subsystems to make

coordinated checkpoints to help reduce the possibility of a
cascading rollback during recovery. Each subsystem then
becomes stable in the event of a failure. Reducing the size
of a coordinated checkpoint versus a system-wide
coordinated checkpoint will help control the overhead of
such an operation. The subsystems are loosely coupled and
the coordinated subsystems do not need to communicate
with other coordinated subsystems. This ensures subsystem
stability and recoverability however, the addition of a single
independent checkpointing system at a higher level ensures
system stability.

The independent checkpointing system (IN) captures
checkpoints of the coordinated subsystems. The
independent checkpoint system does not know the details of
the CO subsystems. It manages checkpoints for the CO
subsystems as a whole. Given the loosely coupled nature of
the CO subsystems the entire system is no longer subject to
the possibility of a cascading rollback should a failure occur.
Even if an entire subsystem fails the independent
checkpoints can recover the subsystem and restore the
system to a stable state.

VI. FAULT TOLERANCE AND MAPREDUCE
MapReduce was originally developed by Google to

handle large-scale data sets on distributed computing
systems. Hadoop implements MapReduce as an open source
project. The system consists of a map step whereby the
master or controller node “maps” the input by dividing it
into smaller sub-problems and distributes the tasks to worker
nodes. Once the worker nodes complete their designated
tasks the controller node accepts the results of the sub-
problems during the reduce step and combines them in some
meaningful fashion so as to provide the solution to the
original problem.

MapReduce has been used by the New York Times to

convert 4 TB of tiff images into PDF format by mapping
conversion tasks to worker nodes and aggregating the
response [11]. These tiff images comprised the New York
Times articles scanned from the original paper from 1851
through 1922. Google uses MapReduce technology to
process end-user queries via google.com. Google indexes
the Internet using scripts known as spiders. These spiders
crawl websites and save the data on those websites. The
data is housed on a common file system available to the
MapReduce nodes. When a user queries google.com,
Google servers map the query to any number of nodes. Each
node is allocated a small subset of the documents found on
the Internet by the spider. The results are returned to the
controller node and aggregated for display to the user. This
happens hundreds of millions of times each day. O’Malley
and Murthy [15] have provided research on the performance
of MapReduce using Hadoop. Their data indicates a 1406
node Hadoop MapReduce cluster was able to perform the
Graysort benchmark on 500 gigs of data in 59 seconds.

MapReduce and Hadoop can be used for long running

calculations on large data sets such as manipulating large
sets of spatial data, analyzing weather data, or modeling
various data-intensive problems. Failure of a single node
will cause the entire process to fail in certain workflows, as
there will be a portion of data unaccounted for in the final
results. Given a task of sorting many petabytes of data, a
failure of a single node would leave a gap in the results. A
controller can restart a failed job on an idle node or wait for
the tasks to complete and remap the job to a finished node.
However, on long-running jobs the delay this would

introduce could be catastrophic. If the execution of a single
map operation takes on the order of weeks or months
restarting that failed task on a functioning node would slow
the result while restarting the task on a node once it has
completed its original task would double the execution time.
For time-sensitive tasks this sort of fault tolerance may not
yield acceptable results.

According to Kavulya et al, most jobs fail within 150

seconds of the first aborted task and a maximum error
latency of 4.3 days [16]. However, the first aborted task
may not occur until much further into the calculations.
Additionally, the majority of errors were seen in the map
phase versus the reduce phase of the operation when the
available processor count is low and the impact of a fault is
going to be more significant. This impact increases
depending on the nature of the fault. In a two-core system, a
permanent fault will reduce the available cores to one
resulting in a substantial increase in running time. However,
on large systems with larger number of available cores to
execute tasks on, a permanent failure has a less significant
impact on the execution of the overall job.

VII. N-MODULAR REDUNDANT MAPREDUCE
In order to avoid failures we propose applying the same

N-modular redundancy seen in embedded systems and other
fault tolerant areas to the MapReduce programming
paradigm. The goal of an N-Modular Redundant
MapReduce system would be to facilitate highly reliable
parallel processing performed in a heterogeneous
environment via commodity off the shelf hardware. The
system would require no expensive or customized hardware.
This system would allow for two modes of operation: Fault
tolerant and highly reliable. In fault tolerant mode it would
map the job to two or more nodes and simply respond with
the first result. This protects against a failed node. The
highly reliable mode would compare the results and return
the majority. The system would allow for variable
redundancy in the configuration of jobs prior to the mapping
operation.

There has been work around developing NMR processors

for distributed systems to address Byzantine failures [12]
however these systems require specialized processors and
components. Given the distributed nature and ability for
MapReduce to run on heterogeneous hardware it makes the
environment well suited to the overlay of an NMR system
on top of existing MapReduce constructs. MapReduce is
fault tolerant by design but it is unable to handle faults and
still produce results in at a desired time. When calculations
must by accurate such as mission or life critical application
or results must be complete by a desired time, MapReduce
cannot meet those requirements in the presences of faults.
The goal of an NMR fault tolerant MapReduce cluster is to
facilitate large data-set operations using open-source
software running on commodity hardware.

In figure 3 we show the normal state of a MapReduce
cluster. The controller maps tasks to nodes, the nodes
complete those tasks, and the response is typically returned
to the controller during the reduce phase. Figure 4 shows a
failed node in MapReduce where no results from that node
are ever returned to the controller. The goal of the NMR
MapReduce is to mask this failure and allow for normal
operation to continue without any lost time.

FIGURE 3 – NORMAL MAPREDUCE ARCHITECTURE

FIGURE 4 –MAPREDUCE WITH A FAILED NODE

In figure 6 we show the proposed architecture for the

NMR MapReduce system. Each task is mapped to three
nodes. This instance is a triple modular redundant system

but the idea can scale beyond three nodes should the
operator require it. Each node performs the calculations
independently. The results are then sent to a voter. In the
diagram the voter is logically shown as an independent node
however in practice the voter could be the controller node.
The voter will take the results of each node and compare
them. The voter will relay the proper results to the
controller based on the criteria specified in the configuration.
The operator can specify how many redundant nodes the
operation executes on as well as how many need to match
for a consensus. For instance, the operator can specify five
redundant nodes and three of those five must agree.

Figure 3 – Proposed NMR MapReduce cluster.

VIII. VOTING IN THE N-MODULAR REDUNDANT SYSTEM
Voting in an N-modular redundant MapReduce system

can be complicated. Voting in embedded systems is simpler
as the inputs are logic inputs consisting typically of 1s and
0s. An embedded voter could simply compare each signal to
the rest and return the majority or for simple fault tolerance,
return the first response. The voter in a higher-level
MapReduce operation would have to contend with larger
result sets and the comparisons could be complicated. One
attempt to minimize the complication of the voting
algorithm is to hash the results to a simple string value for
comparison.

There are two obvious modes of operations for a NMR

MapReduce cluster. The first being simple fault tolerance.
A cluster could be run in a 2*N configuration such that
every map task is executed on two MapReduce nodes.
Given equivalent hardware, the tasks should complete in the

same time and the result is a simple first response. The voter
is reduced to simply passing along the first result it receives.
This system can be extended depending on the number of
redundant nodes required. For calculations that simply
cannot be lost the cluster could be configured in a 3*N or
higher would improve the reliability. The reliability in the
case of parallel execution is a simple parallel calculation as
seen in equation 3 where Rn is the reliability of a given
system in the TMR configuration.

!! = 1 − (1 − !!)(1 − !!)

EQUATION 3 – RELIABILITY OF A PARALLEL SYSTEM

Alternatively, should highly reliable calculations be

required of the system, the voter system could be employed
to compare the results of each node and ensure that the
system returns the majority. This would be used where
component reliability is already high however incorrect
results would present a significant problem for the operators.

1. For each Ri in Rn
2. Compare Ri with Ri through Rn
3. If Ri = Rj counter = counteri + 1
4. next j
5. if MAX(counteri) >=MIN_CONSENSUS
6. return Ri
7. else
8. return null

FIGURE 6 – VOTING ELECTION ALGORITHM

Figure 6 shows a simple algorithm to count the number of

hashed results that are equal. There is no need to compare
all values to each other simply compare each result to the
remaining results and count the total number that are equal.
We then return the result with the maximum number of
equal results in the entire set as long as that number is
greater than the minimum required consensus as specified in
the job configuration. This could be as low as one if the aim
is durable computing and there are complete node failures or
the ceiling of n/2 for the majority to mask faults in the
results.

IX. SPATIAL CONSIDERATIONS
In an attempt to facilitate maximum node availability we

evaluate physical and spatial considerations for the
MapReduce cluster. To maintain high availability the
MapReduce system should be designed to take advantage of
some spatial distribution. With modern networks capable of
high-speed data transmission MapReduce nodes could
theoretically be located throughout datacenters across the
world. However, at a minimum, the system would need to
be configured to have nodes in separate racks in the data
center. Each rack should be connected to separate power
systems such that if the power fails in rack the other racks
continue operation. At a minimum, no more than two nodes
in the NMR configuration should be in the same rack. This
allows the loss of one rack in the data center due to power
failure or network failure while still maintaining a running

node. In a properly configured system the reduction object
from the running node would be used as the only survivor of
the failure and the operation would continue. Obviously this
is dependent on proper power and network redundancy,
which is outside the scope of this paper.

Moving beyond simple spatial considerations within the

datacenter, in ultra high reliability operations the nodes
could be moved to an offsite datacenter. For instance, in a
cluster of 3,072 nodes, one third of those nodes would be
allocated to the local datacenter while one third each could
be placed in offsite datacenters to allow for the loss of two
of the three datacenters completely in this system. For true
operational stability and reliability however the controller
node would likely need to be placed a fourth location. The
main fault of this design is the single point of failure the
controller node presents.

Common storage is the underpinning of MapReduce. The

Hadoop file system presents all the nodes with a common
view of the data. This allows the nodes to perform
operations on the data without having to replicate the data.
This is a major constraint on the spatial distribution of
nodes, as it requires a network capable of replicating or
operating on massive data sets. Within a very small
geographic region this is typically not an issue as local area
networks and fiber interconnections make data transfer fast
and reliable. However, moving beyond the scope of a few
city blocks and into the realm of distributing nodes to
various states or countries would become dramatically more
challenging.

X. CONTROLLER CONSIDERATIONS
At the heart of the MapReduce model is a master node or

a controller. This node is responsible for the mapping
operation and distributes the workload to the nodes. In the
NMR MapReduce model proposed there is no consideration
or controller node redundancy. The general idea is that the
controller is not the same as the nodes and is, in and of itself,
highly reliable. Should the controller fail for some reason,
the entirety of the calculations would be lost and the entire
cluster itself would completely fail. However, the system
could be designed in such a way that instead of partitioning
the nodes into a mirrored or NMR configuration the design
would build MapReduce systems in an NMR or mirrored
configuration. For instance, in a simple mirrored system,
there would be two complete and functioning MapReduce
clusters complete with their own controllers and own sets of
nodes. These clusters would have no understanding or
context of the redundancy applied. Each controller would be
given the exact same tasks to complete and would then
return their results independently. A voter node or array of
voter nodes would than take the results and return the proper
data based on the configuration. In the case of the mirror, it
would simply return the first response. A single node failure
at the cluster level of either of the clusters would remove
that cluster from service and the computation would be
dependent on the remaining operational cluster.

Applying the NMR style redundancy to the higher-level

MapReduce clusters there would be three distinct and
complete clusters. They would each get a complete working
problem set and return responses to the voter node or nodes.
The voters would then return the majority answer to the user.

Moving the redundancy from the node level to the cluster

level provides obvious benefits. No longer is the controller
the single point of failure. Additionally, allocating jobs
could be easier since we are no longer altering the
fundamental operation of a MapReduce system by injecting
changes into the core of the operation. In operating
redundant nodes we would need to reconfigure the code to
allocate the tasks to three nodes, the controller would need to
have an advanced understanding of the nodes not normally
required (e.g. spatial data to distribute work based on
location and machine data to match like machines). The
controller would also need to understand how to perform the
reduction on multiple identical datasets returned from
redundant nodes. Bringing the redundancy up one level
allows us to add the functionality onto existing MapReduce
clusters. No longer is the off-the-shelf cluster aware of fault
tolerance it simply operates as normal. In this scenario we
return results to a second controller that implements our
redundancy. This voter or controller would aggregate the
responses from multiple MapReduce clusters and present the
results. This effectively commoditizes the MapReduce
cluster and allows for the fault tolerant cluster user to add
clusters to the fault tolerant cluster. It’s conceivable that a
user at one national laboratory would be able to “borrow”
another lab’s MapReduce cluster for added fault tolerance.
The clusters can be completely heterogeneous and unaware
of the other. The operator would run software that is aware
of the clusters, the software would dispatch the jobs, and
finalize the responses. The biggest draw back in this
scenario is the loss of common data storage.

Again, the issue of data locality becomes an issue in the

redundant cluster configuration. Truly independent clusters
would not share a common file system making MapReduce
not a viable option. The dependence on a common file
system is fundamental to the MapReduce configuration. The
arrays of MapReduce clusters could be configured in a very
confined geographic area such as a building or within a city
block or two. This would allow for high-speed fiber
interconnections and the sharing of a common file system.
The nodes would be allocated into various clusters and the
clusters controlled via master the proposed fault tolerant
software. This provides some spatial distribution but not so
much as to make the data transfer and common file system
impossible.

Obviously, these are scenarios and configurations

motivated by not only high-performance parallel computing
but also by ultra high reliability computing. These
configurations would be cost prohibitive for a sizable
portion of the general high-performance user base.

XI. COST CONSIDERATIONS
Any system implementing mirroring or N-modular

redundancy in computations incurs a cost penalty as a result.
Adding redundancy requires adding components,
interconnections, additional power, cooling, and
management in a MapReduce environment. The traditional
high-performance computing user would not require the
kinds of redundant systems described here when using
MapReduce. However, for highly valuable and long running
tasks, the benefits would justify the costs. Given that
Hadoop MapReduce clusters can be built with simple off the
shelf servers the barrier to entry is dramatically reduced.
Replicating complete MapReduce clusters in a high
reliability configuration would double, triple, or more the
cost of the cluster however it would provide dramatic
improvements in the reliability. This sort of system would
be appealing to organizations that need results from large
datasets within time constraints and thus cannot wait for
tasks to be restarted and the delivery delayed as well as
organizations for which data accuracy is or paramount
importance.

XII. CONCLUSION
We have evaluated the widely used parallel computing

fault tolerant schemes in shared memory systems as well as
MapReduce. Shared memory systems make use of two
different checkpointing schemes to save execution state to a
stable storage and recover later in the event of a node or core
failure. MapReduce is inherently fault tolerant however it
often does not recover quickly as it needs to wait for a node
to become free before restarting, from the beginning, the
failed computation on that node. We proposed a scheme
whereby the computations are started simultaneously on
two, three, or more nodes and the results are either taken in a
first return wins or via a voting algorithm to ensure
correctness in the results. The results are hashed in this case
and compared. Typically this is a majority wins scenario but
the operator can configure the output of the voting
mechanism for the desired reliability. Additionally, we
proposed moving the redundancy from the node level up to
the cluster level and creating arrays of clusters for fault
tolerance. While the major constraint in the node-level
configuration was introducing new code to the proven
MapReduce systems, moving it to the cluster level presents
the problem of the common file system.

MapReduce is a technology with substantial promise to

change the way we deal with large data sets. It is a
technology that is just beginning to show what it can do in
business and laboratories around the world. We have shown
that while it comes at a considerable cost, high-performance
fault tolerant computing using MapReduce is possible in
using a mirrored or NMR style configuration.

REFERENCES
[1] Srinivasan, A.; Shoja, G.C.; , "Time-cost analysis of fault-tolerant

parallel programs with timing constraints," Communications,
Computers, and Signal Processing, 1995. Proceedings. IEEE Pacific
Rim Conference on , vol., no., pp.343-346, 17-19 May 1995

[2] Maier, J.; , "Fault tolerance lessons applied to parallel computing,"
Compcon Spring '93, Digest of Papers. , vol., no., pp.244-252, 22-26
Feb 1993

[3] Elnozahy, E.N.; Johnson, D.B.; Zwaenepoel, W.; , "The performance
of consistent checkpointing," Reliable Distributed Systems, 1992.
Proceedings., 11th Symposium on , vol., no., pp.39-47, 5-7 Oct 1992
doi: 10.1109/RELDIS.1992.235144

[4] Silva, L.M.; Silva, J.G.; , "The performance of coordinated and
independent checkpointing," Parallel and Distributed Processing,
1999. 13th International and 10th Symposium on Parallel and
Distributed Processing, 1999. 1999 IPPS/SPDP. Proceedings , vol.,
no., pp.280-284, 12-16 Apr 1999

[5] Whisnant, K.; Kalbarczyk, Z.; Iyer, R.K.; , "Micro-checkpointing:
checkpointing for multithreaded applications ," On-Line Testing
Workshop, 2000. Proceedings. 6th IEEE International , vol., no.,
pp.3-8, 2000

[6] Jiannong Cao; Yifeng Chen; Kang Zhang; Yanxiang He; ,
"Checkpointing in hybrid distributed systems," Parallel Architectures,
Algorithms and Networks, 2004. Proceedings. 7th International
Symposium on , vol., no., pp. 136- 141, 10-12 May 2004

[7] Oliner, A.; Sahoo, R.; , "Evaluating cooperative checkpointing for
supercomputing systems," Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International , vol., no., pp.8
pp., 25-29 April 2006

[8] Bicer, T.; Wei Jiang; Agrawal, G.; , "Supporting fault tolerance in a
data-intensive computing middleware," Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on , vol.,
no., pp.1-12, 19-23 April 2010

[9] Qin Zheng; , "Improving MapReduce fault tolerance in the cloud,"
Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on , vol., no., pp.1-6,
19-23 April 2010

[10] Goiri, I.; Julià, F.; Guitart, J.; Torres, J.; , "Checkpoint-based fault-
tolerant infrastructure for virtualized service providers," Network
Operations and Management Symposium (NOMS), 2010 IEEE , vol.,
no., pp.455-462, 19-23 April 2010

[11] Gottfrid, Derek (November 1, 2007). "Self-service, Prorated Super
Computing Fun!". The New York Times. Retrieved May 4, 2010.

[12] I-Ling Yen; , "Specialized N-modular redundant processors in large-
scale distributed systems," Reliable Distributed Systems, 1996.
Proceedings., 15th Symposium on , vol., no., pp.12-21, 23-25 Oct
1996

[13] Bressoud, T.C.; Kozuch, M.A.; , "Cluster fault-tolerance: An
experimental evaluation of checkpointing and MapReduce through
simulation," Cluster Computing and Workshops, 2009. CLUSTER '09.
IEEE International Conference on , vol., no., pp.1-10, Aug. 31 2009-
Sept. 4 2009

[14] Gunarathne, T.; Tak-Lon Wu; Qiu, J.; Fox, G.; , "MapReduce in the
Clouds for Science," Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on , vol.,
no., pp.565-572, Nov. 30 2010-Dec. 3 2010

[15] O. O’Malley and A. C. Murthy, “Winning a 60 second dash with a
yellow elephant,” 2009. [Online]. Available:
http://sortbenchmark.org/Yahoo2009.pdf

[16] Kavulya, S.; Tan, J.; Gandhi, R.; Narasimhan, P.; , "An Analysis of
Traces from a Production MapReduce Cluster," Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on , vol., no., pp.94-103, 17-20 May 2010

[17] Ranger, C.; Raghuraman, R.; Penmetsa, A.; Bradski, G.; Kozyrakis,
C.; , "Evaluating MapReduce for Multi-core and Multiprocessor
Systems," High Performance Computer Architecture, 2007. HPCA
2007. IEEE 13th International Symposium on , vol., no., pp.13-24, 10-
14 Feb. 2007

[18] Wang, Li; Ni, Zhiwei; Zhang, Yiwen; Wu, Zhang Jun; Tang, Liyang; ,
"Pipelined-MapReduce: An Improved MapReduce Parallel
Programing Model," Intelligent Computation Technology and

Automation (ICICTA), 2011 International Conference on , vol.1, no.,
pp.871-874, 28-29 March 2011

[19] Chao Tian; Haojie Zhou; Yongqiang He; Li Zha; , "A Dynamic
MapReduce Scheduler for Heterogeneous Workloads," Grid and
Cooperative Computing, 2009. GCC '09. Eighth International
Conference on , vol., no., pp.218-224, 27-29 Aug. 2009

[20] Sandhya, S.V.; Sanjay, H.A.; Netravathi, S.J.; Sowmyashree, M.V.;
Yogeshwari, R.N.; , "Fault–Tolerant Master-Workers Framework for
MapReduce Applications," Advances in Recent Technologies in
Communication and Computing, 2009. ARTCom '09. International
Conference on , vol., no., pp.931-933, 27-28 Oct. 2009

[21] Maier, J.; , "Fault tolerance lessons applied to parallel computing,"
Compcon Spring '93, Digest of Papers. , vol., no., pp.244-252, 22-26
Feb 1993

